Benchmarking infrastructure for mutation text mining

نویسندگان

  • Artjom Klein
  • Alexandre Riazanov
  • Matthew M. Hindle
  • Christopher J. O. Baker
چکیده

BACKGROUND Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. RESULTS We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. CONCLUSION We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interpretation of the Consequences of Mutations in Protein Kinases: Combined Use of Bioinformatics and Text Mining

Protein kinases play a crucial role in a plethora of significant physiological functions and a number of mutations in this superfamily have been reported in the literature to disrupt protein structure and/or function. Computational and experimental research aims to discover the mechanistic connection between mutations in protein kinases and disease with the final aim of predicting the consequen...

متن کامل

Text mining for systems biology.

Scientific communication in biomedicine is, by and large, still text based. Text mining technologies for the automated extraction of useful biomedical information from unstructured text that can be directly used for systems biology modelling have been substantially improved over the past few years. In this review, we underline the importance of named entity recognition and relationship extracti...

متن کامل

Document dissimilarity within and across languages: A benchmarking study

Quantifying the similarity or dissimilarity between documents is an important task in authorship attribution, information retrieval, plagiarism detection, text mining, and many other areas of linguistic computing. Numerous similarity indices have been devised and used, but relatively little attention has been paid to calibrating such indices against externally imposed standards, mainly because ...

متن کامل

High-throughput, interoperability and benchmarking of text-mining with BeCalm biomedical metaserver

Biomedical annotators are very specific tools applied to a highly complex field. Therefore, this kind of software suffers from an extreme complexity which impedes its usage. This complexity, which is reflected in usability problems, is the main cause of disuse, rejection and low impact. This document discusses several of these problems, as well as possible solutions. As a use case, the NLProt p...

متن کامل

Text Mining Infrastructure in R

During the last decade text mining has become a widely used discipline utilizing statistical and machine learning methods. We present the tm package which provides a framework for text mining applications within R. We give a survey on text mining facilities in R and explain how typical application tasks can be carried out using our framework. We present techniques for count-based analysis metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012